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Abstract

Spoken Language Understanding (SLU) is one
of the core technologies in building dialogue
systems. It extracts semantic concepts from
audio transcriptions by recognizing and fill-
ing action slots pre-defined for the system’s
application domain. In this project, we exper-
iment with Chinese SLU by formulating it as
a sequence tagging problem. We apply LSTM,
RoBERTa, and XLM-R to the task, achieving
78.66 validation accuracy and 82.89 validation
F1 score. We propose a novel dual-channel
decoder architecture for SLU that utilizes man-
ually corrected input text to increase model’s
denosing capability, obtaining a notable per-
formance gain over the LSTM baseline. We
also formulate the task a a sequence genera-
tion problem and train an mT5, scoring 78.66
accuracy and 82.85 F1 on the validation set.

1 Introduction

Spoken Language Understanding (SLU) is a core
component in dialogue systems. It takes the Auto-
matic Speech Recognition (ASR) transcriptions of
users’ audio as input, and converts them to struc-
tured semantic information that can be processed
by the downstream dialogue management system
(Figure 1). Most existing approaches in the litera-
ture towards SLU divide it into two sub-problems:
intent classification and slot filling. Intent classi-
fication focuses on predicting a single intent la-
bel from the user query (eg. Navigation or
FindMovie), while slot filling extracts more de-
tailed semantic concepts related to the intent, such
as destination, time and date, or the preferred genre
of movies (Chen et al., 2019; Qin et al., 2021).

Historically, intent classification and slot fill-
ing were considered as two independent tasks and
processed by separate modules (Yao et al., 2014;
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Figure 1: The general architecture of a dialogue system.

Figure 2: An illustration of SLU formulated as intent
classification and sequence tagging.

Ravuri and Stolcke, 2015). However, since these
two tasks are inherently related, the recent trends
in the literature have been to model them jointly,
especially after the advent of pre-trained language
models (Chen et al., 2019; Castellucci et al., 2019).
However, since the intent of a user query can be
easily inferred from semantic slots extracted by the
slot filling module, in this work we take an even
further step, completely discard the intent classifi-
cation task, and regard SLU solely as a slot filling
problem. Following the general practice in the lit-
erature, we formulate slot filling as a sequence tag-
ging task (Figure 2), and apply various models to
solve it in section 3. In section 4, however, we also
explore the possibility of refomulating sequence
tagging as a sequence to sequence generation task,
which has demonstrated amazing potential when
combined with pre-trained language models in re-
cent years (Raffel et al., 2020; Xue et al., 2021).



Figure 3: An example of annotated (left) and test (right)
data instance.

2 Problem Formulation

2.1 Dataset
Our dataset consists of ASR transcriptions of 6014
navigation queries, partitioned into 5119 training
samples and 895 validation samples. Each of these
transcription is annotated with one or more seman-
tic concept, represented by an action-slot-value
triple, as shown in Figure 3, while at test time
each new transcription contains an empty field of
semantic information, and a pred field to be filled
by the model’s prediction. The annotated dataset
also contains a field of manually corrected audio
transcription, the, the application of which we will
explore in section 3.2.

2.2 Task Definition
As explained in section 1, we formulate SLU as
a sequence tagging task. Given an input token
sequence x1:n, we aim to find a label yi for each
input token, such that the conditional probability
of the label sequence y1:n is maximized:

ŷ1:n = max
y1:n

p(y1:n|x1:n). (1)

In Equation (1), each yi can be one of B, I, O,
indicating the corresponding token to be at the be-
ginning of, inside, or outside a semantic concept.
Moreover, the classical BIO tagging is extended to
include action and slot information in the tagging
labels. Specifically, we build a dictionary of seman-
tic concepts from the training data that includes
two types of actions - inform and deny - and
18 slot types (such as destination, travel method,
route preference), and assume that any new query
at test time contains only actions and slots within
this dictionary. We than take the combination of
each action-slot pair with either B or I to obtain
a total of 73 tagging labels, each in the form of
a triple B-action-slot or I-action-slot

except the special tag O, thereby formulating SLU
as a standard sequence tagging problem. In the
inference stage, the slot values are simply extracted
as substrings of the ASR transcription according to
the predicted tagging labels.

2.3 Evaluation Metrics

In this work, we use two metrics to evaluate the
performance of different SLU systems - accuracy
and F1 score. Accuracy is defined as the percentage
of queries for which the system correctly predicts
all the action-slot values, while F1 score is the har-
monic mean of precision and recall computed on
the set of action-slot values of all queries. For each
model in the following experiments, we report the
best metrics on the validation set during training.

3 SLU with Sequence Tagging

3.1 LSTM

Recurrent Neural Network (RNN), due to its re-
current nature, has been widely adopted to pro-
cess sequences with varied lengths, such as text
or audio signals. And Long Short-Term Memory
(LSTM, Hochreiter and Schmidhuber, 1997) has
demonstrated the ability to effectively cope with
the vanishing gradient problem in RNN and model
long-distance dependency within a sentence.

As a baseline, we train a two-layer bidirectional
LSTM with 256 hidden units to encode the user
query obtained by ASR. The last layer’s forward
and backward hidden states of each token is con-
catenated and projected by an output layer to the
label space, as demonstrated in Figure 4. We ini-
tialize the model with pre-trained 768-dimensional
word vectors with a vocabulary size of 9600. Each
Chinese character in the user query is mapped to
a word vector, and any token out of vocabulary
is mapped to the vector of special token <unk>.
Also, since sequential inputs must be padded to
the same length to facilitate parallel computation
in LSTM, we add another special tag <pad> to
the label set apart from the 73 tags mentioned in
section 2.2 to mark the labels for padded positions
during training.

3.2 Dual-channel Decoder with Pre-training

When utilizing the vanilla sequence tagging for
SLU, one can easily realize that in the original ex-
perimental setup, only the noisy input text is used
and our task is ignorant of model’s capability to
de-noise from the noisy texts. This will lead to



Figure 4: An illustration of SLU as sequence tagging
using Bi-LSTM, adopted from Huang et al. (2015).

a deficiency in model’s comprehension capability.
Additionally, it can be seen that the dataset’s do-
main is mainly related to the navigation system,
which makes it possible to incorporate certain rules
for model to learn so that it can de-noise from the
noisy texts.

Based on the above analysis and inspired by
recent successful applications of denoising auto-
encoder in pre-trained language models such as
BART (Lewis et al., 2020), we introduce our dual-
channnel decoder model with pre-training. As
shown by Figure 5 , it consists of a single encoder
and two distinct decoders. The encoder is in charge
of encoding as well as comprehending the input
text. The tagging decoder produces the regular
tagging sequence for SLU, while the de-noising
decoder reconstructs the noise-free input text to
improve the encoder’s de-noising capability. The
de-noising decoder’s mission is mainly fulfilled in
the pre-training stage.

Pre-training We conduct pre-training by the fol-
lowing steps: (1) Construct pre-training data: from
5119 training samples, we extract 3186 samples
that have the same noisy and de-noised input texts
and 420 samples with different noisy and de-noised
input texts of the same token length 1; (2) Conduct
pre-training: the task for pre-training is to let the
encoder and the de-noising decoder to reconstruct
the de-noised text (pre-training output) from the
noisy texts (pre-training input).

Setup The pre-training loss is set to be the cross-
entropy loss for sequence tagging. For the de-
noising decoder, we use a 2-layer feed-forward
network with hidden size twice of the encoder’s

1The reason is: (1) To maintain the consistency between
pre-training and training since in training, the input length
is the same as the output length; (2) For convenience. If the
input and output lengths could be different, then our tagging
decoder would fail to reconstruct the input and a generative
decoder would be required.
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Figure 5: Overview of dual-channel decoder model with
pre-training and training.

output hidden size and a ReLU activation func-
tion after the intermediate layer. It’s expected that
during pre-training, the de-noising reconstruction
objective will enable the encoder to learn from this
domain’s data to handle the rules for simple de-
noising. Then, with the encoder pre-trained, the
next step - regular sequence tagging training for
SLU - will start from a more learned point.

3.3 RoBERTa and XLM-R
While LSTM and its variant Gated Recurrent Unit
(GRU) have historically achieved promising perfor-
mance on Machine Translation (MT) and ushered
the NLP community into neural age (Sutskever
et al., 2014; Cho et al., 2014), they still suffer from
deficiency in modeling long-distance dependencies
and inherent incompatibility with parallelization.
Bahdanau et al. (2015) applied attention mecha-
nism on top of GRU to address the first issue, and
Vaswani et al. (2017) groundbreakingly introduced
Transformer, completely replacing recurrent units
with self-attention modules, setting new records on
machine translation at the cost only a fraction of
previously state-of-the-art model’s training time.
More recently, BERT (Devlin et al., 2019) com-
bined the idea of self-supervised pre-training with
Transformer encoder architecture, breaking records
on practically all natural language understanding
(NLU) tasks (Wang et al., 2018), including Named
Entity Recognition (NER), a sequence tagging task
that is similar to our SLU formulation.

Therefore, we follow the history trend in lan-
guage representation, and replace the LSTM in sec-
tion 3.1 with a pre-trained language model. More
specifically, we use Chinese RoBERTa with whole
word masking (Cui et al., 2020). RoBERTa (Liu
et al., 2019) is a variant of BERT pre-trained on a
much larger corpus without Next Sentence Predic-



Figure 6: An illustration of sequence tagging using
BERT or BERT-like Transformer encoders, adopted
from Devlin et al. (2019).

tion (NSP) objective, and has demonstrated better
performance on downstream NLU tasks. The mod-
eling details of RoBERTa for sequence tagging,
demonstrated in Figure 6, is essentially the same
as LSTM, except that recurrent units are replaced
by Transformer blocks and no extra word vectors
are required (Chinese RoBERTa released by (Cui
et al., 2020) has a vocabulary size of around 21
thousand).

However, recent works in the literature have
also found that multilingual pre-training can im-
prove the quality of language representation for
low-resource languages (at the cost of lower per-
formance on high-resource languages) compared
with monolingual models, in the case of both NLU
and MT (Conneau et al., 2020; Arivazhagan et al.,
2019). Since Chinese is usually considered to
be an intermediately sized language (Xue et al.,
2021), we also train a model with XLM-R (Con-
neau et al., 2020), the multilingual counterpart of
RoBERTa with a vocabulary of 250 thousand Sen-
tence Piece (Kudo and Richardson, 2018) tokens.
For the purpose of comparison, we train XLM-R
using strictly the same set of hyper-parameters and
Chinese RoBERTa.

For these pre-trained language models, we also
apply the dual-channel decoder architecture de-
scribed in section 3.2, but reduce the denosing
decoder to only one forward layer so that we intro-
duce only a minimal number of extra parameters
on top of the models pre-trained by MLM.

3.4 Training Details

Our LSTM model is trained by Adam optimizer
(Kingma and Ba, 2015) with learning rate 1×10−3

Model Dev Acc Dev F1

LSTM 71.40 77.35
RoBERTa 78.10 82.31
XLM-R 78.44 82.89

Denoising LSTM 73.85↑↑ 78.93↑↑
Denoising RoBERTa 77.99↓ 82.63↑
Denoising XLM-R 78.66↑ 82.50↓

Table 1: Validation performance of sequence tagging
models.

and batch size 32 for 20 epochs. The pre-trained
language models, on the other hand, are optimzied
by AdamW (Loshchilov and Hutter, 2019) with
learning rate 1 × 10−5, batch size 32, and also
for 20 epochs. We use the base version of both
RoBERTa and XLM-R with 12 Transformer layers.
For our dual-channel decoder model, we pre-train
for 10 epochs and then proceed with the same set of
hyper-parameters as corresponding baselines. All
the training is conducted on an RTX 3090, and
takes only a matter of minutes.

3.5 Results and Analysis

3.5.1 Vanilla Sequence Tagging

The training curves of vanilla LSTM, RoBERTa,
and XLM-R are plotted in Figure 7, and their val-
idation performance is recorded in Table 1. The
best result is achieved by XLM-R, with 78.44 ac-
curacy and a 82.89 F1 score. LSTM, as expected,
underperforms by 5-7 points when compared with
the pre-trained models.

An intriguing observation from Figure 7 is that
the training loss does not reflect the representation
power of the models. While LSTM is obviously the
least expressive model among the three, its train-
ing loss is the lowest, even though the three mod-
els’ losses are calculated in the same label space.
A similar phenomenon is that the validation loss
seems to be uncorrelated with our evaluation met-
rics. The first subfigure clearly shows that LSTM
and RoBERTa start to overfit on the training set
after 2 and 5 epochs respectively, while XLM-R,
being the most powerful model2, is more robust to
overfitting. The evaluation metrics of all three mod-
els, however, reach a plateau after several epochs
of training and do not demonstrate any downward
trend.

2XLM-R’s Transformer layers are the same as RoBERTa,
but it has a much larger embedding layer.



(a) Training (dashed) and validation loss. (b) Validation accuracy. (c) Validation F1 score.

Figure 7: Training curves of LSTM, Chinese RoBERTa, and XLM-R.

Figure 8: Reconstruction loss during pre-training.

3.5.2 Dual-channel Denoising Decoder

The experimental results of SLU models pre-
trained with denoising decoder are also recorded
in Table 1. With dual-decoder pre-training, the
performance of LSTM baseline increases from
71.40/77.35 to 73.85/78.93, by 2.5 and 1.6 points
respectively. RoBERTa and XLM-R, however, do
not benefit from this pre-training scheme.

To explore the reasons behind these phenomena,
we plot the denoising reconstruction loss of pre-
training in Figure 8. All three curves in the figure
are cross-entropy loss calculated on a vocabulary
of 1928 tokens, constructed from the combined set
of ASR transcriptions and manual corrections. The
loss of LSTM is significantly lower than the pre-
trained language models and close to zero, both
indicating overfitting. We hypothesize that this is
a direct result of the limited size of our dataset.
RoBERTa and XLM-R, on the other hand, are or-
ders of magnitude larger than the LSTM baseline,
and thus require much more training data to fit
on the task. Also, the knowledge learned during
their self-supervised pre-training may prevent them
from overfitting on a small amount of data. This is
also corroborated by LSTM’s lower training loss
in Figure 7.

Another possible explanation for the pre-trained

language models’ insensitivity toward our denois-
ing pre-training is that they have already acquired
some denoising capability from MLM pre-training.
Since the starting point of distributed representa-
tion (Mikolov et al., 2013) and contextual represen-
tation (Devlin et al., 2019) is to “represent a word
by the companies it keeps", models thus trained
should be able to adapt each token’s representation
to its context and implicitly correct the errors in
ASR transcriptions to a certain extent.

4 SLU with Sequence to Sequence
Generation

4.1 Generative Sequence Tagging
While RoBERTa and other variants of BERT have
pushed language model’s performance in natural
language understanding to a new height, an inher-
ent shortcoming of these models is that they can
only be used for discriminative tasks, but not for
text generation. Another problem is the inconsis-
tency between their pre-training and fine-tuning
objectives. Fine-tuning these models is mostly
achieved by registering a task-specific classification
head, which not only introduces new parameters
and does not utilize the model’s MLM pre-training
objective, but also renders models fine-tuned for
different downstream tasks incompatible with each
other.

In response to these issues, Raffel et al. (2020)
proposed T5, a Transformer architecture that uni-
fies all text-based tasks into a sequence to sequence
framework, obviating the need of different fine-
tuning schemes for each task and in most cases sur-
passing previously state-of-the-art models. Since
sequence tagging, by its definition, is in the middle
ground between classification and generation, we
reformulate our SLU objective in the generative
fashion.

Formally, the probability in Equation (1) is fac-



(a) Training and validation loss. (b) Validation accuracy and F1 score. (c) Validation precision and recall.

Figure 9: Training curves of mT5.

torized it into a product of conditional probability
of yi given the input and all previous labels y1:i−1:

pθ(y1:n|x1:n) =
n∏

i=1

pθ(yi|y1:i−1,x1:n), (2)

where each tag is conditioned explicitly on the pre-
vious tags (i.e. teacher forcing during training and
autoregression during inference) as opposed to be-
ing conditioned only on the contextualized hidden
state extracted by the encoder as in all models in-
troduced in section 3.

4.2 Training Details
In practice, we add the 72 labels that start with B
or I as special tokens into the model’s vocabulary,
and register a randomly initialized embedding vec-
tor for each of them in the model’s output layer.
We train the model with token-wise maximum like-
lihood on pairs of token lists where the input se-
quence (query text) and output sequence (labels)
have the same length. At inference time, we set the
maximum output length to the input length, and
disable the generation of any tokens other than the
special tokens (including </s>, <pad>, and the
72 labels) and O to ensure that the output is a legit
tag sequence.

We use the base version of mT5 (Xue et al.,
2021), with a vocabulary of 250 thousand tokens
and 12 Transformer encoder, 12 Transformer de-
coder layers respectively. We optimize the model
using AdamW (Loshchilov and Hutter, 2019), with
learning rate 1 × 10−4, batch size 32, for 200
epochs. The training process takes about two hours
on an RTX 3090.

4.3 Resutls and Analysis
The validation loss and metrics of mT5 during train-
ing are plotted in Figure 9. In terms of loss, the
model starts overfitting on the training set after

Model Dev Acc Dev F1

XLM-R 78.44 82.89
Denoising XLM-R 78.66 82.50

mT5 78.66 82.85

Table 2: Validation performance of mT5, in comparison
with XLM-R and denoising XLM-R.

about 125 epochs, but only mildly when compared
with the encoder-only models in Figure 7, most
likely due to its larger capacity. A more interesting
observation is that recall on the validation set is
notably lower than precision at the beginning of
training, especially in the first ten epochs. This is
probably a result of the gap between teacher forc-
ing during training and auto-regressive generation
during evaluation, which causes the model to be
only able to correctly generate the first few tokens
and to veer off without turning back after the first
wrong prediction.

The best checkpoint of mT5 performs on par
with XLM-R, with 78.66 accuracy and 82.85 F1

score, as shown in Table 2.

5 Conclusion and Discussion

In this work, we formulated SLU as a sequence
tagging problem, and applied vanilla LSTM,
RoBERTa, and XLM-R to it, obtaining progres-
sively better performance. Based on these models,
we introduced a dual-channel decoder model with
denoising pre-training, observing more than two
points’ performance gain in LSTM but negligible
impact on the pre-trained language models. We
also formulated SLU as a tag sequence generation
task, and trained an mT5, yielding results compara-
ble with the best discriminative models.

For further researches on SLU, an intriguing
direction is the utilization of manually corrected
transcriptions in the training data in ways other



than denoising pre-training. As these transcriptions
are unavailable at test time, they can be viewed as
privileged information in the training stage, and
models such as hallucination network (Hoffman
et al., 2016) may be applied to improve the per-
formance of SLU systems with this information.
And within the denoising pre-training framework,
a natural extension of our dual-channel decoder
is to adopt more data augmentation methods or
self-supervised training techniques to enlarge the
pre-training gain, like replacing spans of text with
text of similar tones. Additionally, we can also
specifically collect pairs of phrases or words that
are prone to be recognized mistakenly by the ASR
system to enrich the pre-training dataset and im-
prove the domain adaptation effect of denoising
pre-training.

Also, the inconsistency between validation loss
and validation metrics in Figure 7 suggests that se-
quence tagging may not be the optimal solution for
SLU, and other paradigms, especially sequence to
sequence generation, may be worth more attention.
While we have tried using mT5 for SLU in this
work, it is used to generate the tagging sequence
and thus still falls into the sequence labeling frame-
work. We do believe that the end-to-end approach
of letting the model directly learn to map from
query text to semantic concepts is worth research-
ing in the future.
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