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Abstract

In this work, we conduct experiments of senti-
ment analysis on 1.6 million training samples
using classifiers both statistical and deep.
Our best model, fine-tuned RoBERTa-large,
achieves an accuracy score of 88.58, followed
closely by its multilingual counterpart XLM-R
with 88.30. Prompt-tuning RoBERTa on
only a fraction of the training data yields a
surprising result of 86.35, and support vector
machine also demonstrates a decent perfor-
mance when coupled with features extracted
by RoBERTa’s tokenizer and embedding
layer. Our code is published at https:
//github.com/Geralt-Targaryen/
CS247-sentiment-analysis.

1 Introduction

Sentiment analysis is a classical task in artificial
intelligence, and is generally considered to be an
important benchmark in natural language under-
standing (Wang et al., 2018). A prevailing formu-
lation of sentiment analysis is the quintuple def-
inition, where an opinion is defined as a quintu-
ple (ei, aij , ooijkl, hk, tl) with entity e, its aspect
a, opinion orientation oo, opinion holder h, and
time of opinion expression t. The opinion orienta-
tion can be either positive/negative/neutral, or ex-
pressed with different intensity levels. In this work,
we make simplifications to the quintuple definition,
and only consider the two-tuple (aij , ooij).

Historically, many popular supervised classifica-
tion models, including Naive Bayes, SVM, logistic
regression, have been adopted for sentiment anal-
ysis. Most of these statistical classifiers assume
bag-of-word model, and represent each sentence
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with an unordered combination of each token’s fea-
ture. Tan et al. (2011) also took social relationships
behind user-level sentiments into consideration.

More recently, deep neural networks have been
applied to sentiment analysis and achieved supe-
rior performance. Socher et al. (2013) introduced
a semantic treebank with fine-grained sentiment
labels for every phrase in a sentence, while Kim
(2014) groundbreakingly employed convolutional
neural network in text classification. And since the
advent of BERT (Devlin et al., 2019), pre-trained
language models based on Transformer (Vaswani
et al., 2017) have established dominance in senti-
ment analysis, along with other natural language
understanding benchmarks (Liu et al., 2019; Con-
neau et al., 2020).

2 Traditional Classifiers

Since the rise of deep learning, applying statistical
models to features extracted by neural networks has
been a popular approach, especially in the field of
computer vision after the advent of ResNet (Chopra
et al., 2013; Hoffman et al., 2014). Similarly, in
this work we explore the capabilities of classical
models such as SVM with features extracted by
various networks.

2.1 SVM

Support Vector Machine was arguably the most
popular and powerful model in machine learning
before the rise of deep neural networks. Even to-
day, researchers still resort to SVM on tasks where
data is really scarce. However, as SVM performs
classification by maximizing the margins between
different data classes within the feature space, it
requires each data sample to be represented as a
fixed-dimension feature vector, which is not intu-
itive for sequence classification tasks such as senti-
ment analysis.

To address this issue, we adopt two approaches
to generate a fixed-dimension representation for
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each input sentence. The first is to naively tok-
enize the raw sentence by the occurrence of white
spaces, and average the 1024-dimension word2vec
(Mikolov et al., 2013a,b) representation of each to-
ken in the sentence. The word vectors are learned
from the training corpus, and any unknown tokens
in the test samples are ignored.

The second is to tokenize the raw inputs with
RoBERTa’s tokenizer instead, and process the to-
kens with RoBERTa’s embedding layer to obtain
one 1024-dimensional feature vector for each to-
ken. The feature vector for the input sentence is
then computed by simply taking the average of
each token’s feature in that sentence. However, we
note that this approach differs from the first one in
more than one aspect: on one hand, RoBERTa’s to-
kenizer is based on BPE (Sennrich et al., 2016) and
can process any token in the test vocabulary; on the
other hand, RoBERTa’s embeddings are pretrained
on a much larger corpus than word2vec. Thirdly,
the sentence representation generated by averaging
word2vec vectors is strictly a bag-of-word model
and contains no information of word ordering in
the sentence, while RoBERTa’s embedding vectors
are the summation of word embedding, token type
embedding, and positional embedding. Also, we
postulate that since the dimension of RoBERTa em-
beddings is 1024 - much larger than the average
length of Twitter comments (Figure 4) - most of the
information contained in token embeddings would
be preserved even after being averaged over the
dimension of sentence length.

2.2 Training Details
We randomly sample 10 thousand instances from
the original dataset, and preserve 1/10 of this
smaller training set for validation to determine
the best kernel and regularization strength C. We
choose this smaller training set for SVM both be-
cause SVM has limited expression power in face
of such a large amount of data, and because the
optimization procedure of SVM is much more com-
plicated then the simple forward pass and gradient
descent used in neural networks, and it may take
quite a long time to fit an SVM on even only several
tens of thousands of training samples. In section
2.3, we also briefly explore the impact of the size
of training set on SVM’s performance.

2.3 Results
The results of sentiment classification using SVM
are recorded in Table 1. Unsurprisingly, using fea-

Embed Train Size Acc
word2vec 10k 68.80
word2vec 10k 62.95*
RoBERTa 10k 83.84
RoBERTa 10k 82.45*
RoBERTa 1k 76.60
RoBERTa 5k 81.62
RoBERTa 50k 81.62
no positional embedding:
RoBERTa 10k 83.29
RoBERTa 10k 82.45*

Table 1: The performance of SVM classifiers. Results
marked with * are obtained without sentence cleaning
before tokenization.

tures extracted by RoBERTa’s embedding layer
yields much better results than word2vec, even
though they are both static and of the same di-
mension. Line 3, 5, 6, 7 of Table 1 show that the
size of training corpus matters up to a certain point,
but keep increasing the amount of data beyond that
starts to confuse the model, as the best performance
is achieved at 10 thousand training samples.

As ablation studies, we first evaluate the contri-
bution of sentence cleaning before the tokenization
step, which normalizes the text to lower case and
removes all punctuation. The results are recorded
in Table 1, marked with *. It can be observed that
for classifiers using RoBERTa embedding, remov-
ing sentence cleaning only leads to 1 point drop
in performance, but for classifiers using word2vec
embedding the drop is almost 6 points. We hypoth-
esize that this is due to the fact that word2vec is
much sensitive to non-standard utterances, such as
emoticons, most of which are removed during this
preprocessing step.

We also replace the positional embedding sub-
layer in RoBERTa’s embedding module with an
identity matrix, as in the last two lines of Table 1,
which show that positional embedding has almost
no impact on the downstream classification perfor-
mance. We posit that this is because the expectation
of cosine positional embeddings of tokens within
a sentence is approximately 0, and this positional
information is lost when being averaged, reducing
the model back to the bag-of-word level.
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Figure: Prompt tuning with fixed prompt

Figure 1: An illustration of fixed-prompt tuning (left) and AUTOPROMPT from (Shin et al., 2020) (right).

3 RoBERTa-based Classification

3.1 Fine-tuning

In this age, where deep learning holds sway over
the vast domain of artificial intelligence, the default,
simplest, and probably best-performing method
for sentiment analysis on millions of training data
is obviously fine-tuning a pre-trained deep model.
And that is exactly what we did - fine-tuning a
RoBERTa. The network structure and pre-training
details of RoBERTa we omit here, but refer readers
to the source works of Vaswani et al. (2017); Devlin
et al. (2019); Liu et al. (2019) instead.

However, considering that the training data col-
lected from Twitter is quite noisy and may con-
tain many tokens that do not fall into RoBERTa’s
relatively small vocabulary (which has about 50
thousand tokens), we also fine-tune an XLM-R
(Conneau et al., 2020), the multilingual counter-
part of RoBERTa-large with a vocabulary size of
250 thousand tokens. To investigate whether un-
known tokens (such as comments in non-English
languages) pose a bottleneck to RoBERTa’s perfor-
mance, we train XLM-R with strictly the same set
of hyper-parameters. However, it should be noted
that recent works in the literature have found multi-
lingual models to underperform on high-resource
languages’ downstream tasks compared with mono-
lingual ones, in the case of both natural language
understanding and machine translation (Conneau
et al., 2020; Arivazhagan et al., 2019).

3.2 Prompt-tuning

While RoBERTa fine-tuned with task-specific su-
pervision has achieved state-of-the-art performance
on GLUE benchmark (Liu et al., 2019), this pre-
training-fine-tuning framework has several draw-
backs. The first is that registering a new classifi-

cation head for each downstream task introduces
extra parameters during the stage of fine-tuning,
which must be trained from scratch on the limited
task-specific data. Secondly, formulating down-
stream tasks as sequence classification is also incon-
sistent with the masked language modeling objec-
tive, preventing RoBERTa from maximally exploit-
ing the knowledge that has been learned during pre-
training. Additionally, during the fine-tuning stage
the parameters in the network’s self-attentions lay-
ers are often adjusted along with the newly regis-
tered classification layer, entailing that one or more
checkpoints need to saved for each downstream
task, which could take up a considerable amount
of disk storage for RoBERTa-large. In response to
these issues, prompt-tuning has been proposed as
an alternate to fine-tuning.

In this work, we first address the second issue,
and utilize RoBERTa’s <mask> token to elicit a
prediction. The model’s architecture is shown in
Figure 1. For each input sentence, we append a
suffix </s> this sentence sentiment
is <mask> before sending it into the tokenizer.
During the training stage, one feed-forward layer
learns to project the hidden state at the mask to-
ken’s position into the label space. In this way,
the number of extra parameters introduced in the
downstream task is the same as fine-tuning, but the
input of that extra layer now corresponds to the
mask token rather than the classification token <s>
at the beginning of the sentence. This trick exploits
RoBERTa’s pre-training objective in a much more
data-efficient way, as RoBERTa’s pre-training pro-
cedure does not include next sentence prediction
(NSP) task, and the hidden representation of <s>
is actually meaningless before fine-tuning.



Figure 2: Loss and accuracy on the development set during fine-tuning of RoBERTa and XLM-R.

3.3 Automatic Prompt-tuning

We also take one step further, and try to automati-
cally generate the prompting suffix using AUTO-
PROMPT (Shin et al., 2020). The ideas behind
AUTOPROMPT is illustrated in Figure 1. Each
input sentence xinp is reformulated to xprompt us-
ing a template λ(xinp,xtrig). xtrig is a series of
trigger tokens that are found using a gradient-based
search, and fills in the slots marked as [T] in the
template. [P] is replaced with the mask token
<mask> upon the template’s instantiation, and di-
rectly elicits an output-token distribution from the
pre-trained masked language model. The proba-
bilities of two pre-defined sets of tokens - one for
positive comments and the other for negative ones -
within this distribution is then marginalized to pro-
duce the final result. These two sets of tokens can
be either manually specified, or automatically con-
structed. In the second case, a logistic classifier is
first trained on top of the masked language model’s
last hidden layer (i.e. the layer right before output
word embedding) at the position that corresponds
to the <mask> token, to predict class labels. The
top-k tokens whose word embeddings (obtained
from the output layer of RoBERTa) have the high-
est correlation with each class are then returned as
the candidate labels for that class. Once tuned, the
only additional “parameters" that this model intro-
duces to RoBERTa are the two sets of candidate
labels and the set of trigger tokens, which can be
conveniently applied in an off-the-shelf fashion.

3.4 Training Details

For fine-tuning both RoBERTa-large and XLM-R,
we use AdamW (Loshchilov and Hutter, 2019) to
tune all of the models’ parameters with learning
rate 5×10−6, weight decay 1×10−2 and batch size
of 8. We randomly sample 100 thousand samples
from the data to serve as development set, and train

the models on the rest 1.5 million samples for 3
epochs. Training each model takes about 30 hours
on an RTX 3090.

When fine-tuning these large models, unlike the
traditional models in section 2, we do not apply
any sentence cleaning during preprocessing, the
rationale being that cleaning based on regular ex-
pression can never cover every strange new word in
such a large training corpus, let alone the unknown
test corpus. So we might as well let these mod-
els learn to deal with bizarre utterances (including
emoticons) by themselves. For example, the sen-
tence 0ff t0 the meetin i hate when
ppl v0lunteer my free timegrrr ob-
viously contains misspelling, shorthand, as well as
OCR-induced errors, all of which occur in patterns
and can be learned when there is enough data, but
are almost impossible to cover with hand-written
rules. Another consideration is that sentence clean-
ing often obliterates information that is actually
helpful for sentiment analysis, especially capital-
ization, which is often the symbol of sarcasm in En-
glish, as in I HATE to admit it but, I
LOVE admitting things.

For prompt-tuning RoBERTa, we use AdamW
with learning rate 2× 10−5 and a linear scheduler
with 100 warmup steps. As the main idea behind
prompt-tuning is to increase data efficiency, we
only us 1 thousand training instances randomly
sampled from the corpus, and reserve one-tenth of
them as validation set. We repeat the procedure
using 3 random seeds, and report their median per-
formance on the test data. For comparison, we
also repeat the fine-tuning procedure on the same
amount of data.

3.5 Results

The training curves of fine-tuning the two pre-
trained models are plotted in Figure 2, and it can



Model Acc
RoBERTalarge 88.58
XLM-R 88.30

Table 2: The performance of pre-trained language mod-
els.

Method Acc
SVM 76.60
fine-tune 86.35
prompt-tune 86.91

Table 3: Performance comparison on only 1k training
data.

be observed from the development loss curves that
both models start overfitting on the training set
after about 3 million steps. We choose the check-
point with the lowest development loss for each
model, and test their accuracy on the test set, as
recorded in Table 2. RoBERTa-large, as expected,
achieves a state-of-the-art result of 88.58. What’s
more surprising is that XLM-R follows closely be-
hind RoBERTa, with only a lag of less then 0.3
points. We hypothesize that this may be a result of
the extremely large training set of this task, whence
XLM-R may make up for its relative insufficiency
of English representation after multilingual pre-
training. Also, from Figure 3 it can be found that
there are some quite frequently-occurring tokens
in the data that are not standard English (e.g. Â
and Ã). These tokens are included in RoBERTa’s
vocabulary (as Figure 3 is plotted based on its to-
kenizer), but XLM-R may nontheless be better at
dealing with accented utterances.

For the scenario of small training set, we
compare the performance of fine-tuned RoBERTa,
prompt-tuned RoBERTa, and SVM using
RoBERTa embedding (the 5th line in Table 1)
in Table 3. With relatively scarce training data,
prompt-tuning is slightly better than fine-tuning.
Perhaps the more surprising observation is that
with only less than 1/1000 training data compared
with the large-scale fine-tuning results in Table
2, fine-tuning RoBERTa on this tiny sub training
set leads to only two points’ drop in performance.
We hypothesize that this is probably due to
the homogeneity of the training set and the
limited size of test set, whose combined effect
is that one thousand randomly sampled training
sentences are quite sufficient for fine-tuning a
large model. For automatic prompt-tuning, we use

the implementation of (Shin et al., 2020), but do
not observe any performance gain over our fixed
prompts.

4 Data Analysis

In Figures 3 and 4, we visualize some basic statis-
tics of the training data. Figure 3 shows the tree
maps of tokens most frequently occurring in the
positive samples that are not frequent in negative
samples, or vice-versa. While some of these most
frequent tokens are inherently sentimental (such
as love, great for the positive class and sad,
hate for the negative class), others are not that in-
tuitive (for example, why Â and Ã occur much more
frequently in the positive class remains a myth).
These complications justify our choice of large lan-
guage models based on Transformer architecture
rather than the more interpretable and traditional
models such as Naive Bayes or TF-IDF embed-
dings.

In Table 4 and Figure 5, we summarize some
of the most common patterns appearing in models’
wrong predictions and their contributions to the
errors of SVM (using word2vec features) and fine-
tuned RoBERTa. The largest portion of error come
from inherent obscurity in the sentences’ sentiment,
such as those with neutral sentiment or mixed emo-
tions. Other than these, SVM classifier has a much
higher error rate on sentences where a single to-
kens plays an important role in determining the
whole sentence’s sentiment, such as sentences with
negation and transition words, or words that rarely
occur in the training corpus or have multiple mean-
ings. These phenomena corroborate our hypothesis
in section 3.4. However, both models seem to have
trouble dealing with emoticons. This is probably
due to the unique characteristics of Twitter, and
could probably be addressed by including Twitter
text into RoBERTa’s pre-training corpus.

We also observe that many of the errors can be
improved by taking linguistic features into con-
sideration, especially part of speech, as shown in
Figure 5. Words with different part of speech are
inherently different in emotional density, as adverb,
adjective, verb and noun are subjective in a de-
creasing order. We also find that when there is a
emotional conflict between different words, the sen-
timent of the sentences is largely dependent on the
ideogram. For example, when verb/noun’s emotion
differs from adjective, the sentiment of the sentence
should go with the verb/noun.



Figure 3: Tokens most contributing to the positive class (left) and negative class (right) in the training data.

Figure 4: Sentence length distribution (tokenized by RoBERTa) of the 1.6 million training samples.

5 Conclusion

In this work, we compared the performance of
SVM and RoBERTa on the task of sentiment
analysis under various settings. For SVM, using
BPE tokenization and pre-trained RoBERTa em-
beddings as input features leads to a significant
gain in performance over the naive tokenization
and word2vec embeddings, while for RoBERTa
prompt-tuning demonstrates higher data efficiency
than fine-tuning. We also analyzed in detail vari-
ous linguistic phenomena that could mislead the
models, and proposed corresponding solutions.
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