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Abstract

Reinforcement learning has achieved remarkable feats in playing games, but has yet
to conquer Mahjong, a popular tile-based board game with imperfect information
and complex rules. In this work, we implement a Mahjong game agent under
Bayesian learning framework utilizing the technique of oracle guiding during
training. We use Deep Q-learning as base algorithm, and apply improvements
including double Q-learning, dueling architecture, and parametric noise. We also
implement a Mahjong game frontend for human tests, and interface our agent with
the online Mahjong platform Mahjong Soul. Experiments show that our agent
achieves an average human-level performance in playing Mahjong.

1 Introduction

Games have long served as touchstones for reinforcement learning and more general artificial
intelligence algorithms. In the past decade, deep reinforcement learning has achieved remarkable
performance in many once human-dominated games, including Atari games [15, 20, 22, 16, 7, 12],
chess [1, 18], Go [17, 19, 18], shogi [18], poker [3, 4, 5], Minecraft [8] and even multi-player esports
games that are far more complex than board games, as in Dota [2] and StarCraft II [21].

However, Mahjong, a usually four-player tile-based game that is especially popular in east Asia,
still remains a challenging ground for reinforcement learning. Mahjong is a multi-round game
with imperfect information, where in each round the players draw and discard tiles alternatingly,
competing with each other towards the first completion of a winning hand. The Japanese variant
of Mahjong (also known as Riichi Mahjong, which is played with 136 tiles) starts with 13 private
tiles for each player and 70 tiles in the live wall, with the state complexity as large as 10145 [9].
Apart from imperfect information and high complexity, Mahjong poses extra challenges for artificial
intelligence algorithms with its complex rules, where the regular order of plays can be interrupted by
certain actions such as Pon and Kan, rendering some widely adopted methods including Monte Carlo
tree search ineffective.

In 2020, Super Phoenix (Suphx) [14], an RL agent for Mahjong trained with the techniques of global
reward prediction, oracle guiding and run-time policy adaptation demonstrated human-level perfor-
mance in Mahjong for the first time. And [9] generalized the oracle guiding technique introduced in
Suphx into a Bayesian learning framework, named as Variational Latent Oracle Guiding (VLOG). In
this project, we combine the VLOG framework and recent advancements in reinforcement learning
algorithms, train an agent for Mahjong, implement a game frontend, and provide an interface for
plugging our agent into online Mahjong platforms.

The rest of this work is organized as follows. In Section 2, we briefly review the settings of
reinforcement learning, the common algorithms, their application in games, and give an introduction
to Japanese Mahjong. In Section 3 and 4 respectively we give the two theoretical bases of our
Mahjong agent - variational auto-encoder and variational oracle guiding. Then, we present the



experimental settings and empirical resutls of our Mahjong agent in Section 5, and draw conclusions
in Section 6.

2 Background

2.1 Reinforcement Learning

Generally, reinforcement learning (RL) environments are modeled as Markov Decision Processes
(MDPs), defined by a tuple < S,A, T,R, γ >, where S and A are the state and action spaces
respectively, and T specifies the state transition probabilities. R : S ×A → R is the reward function,
and γ is the discount factor. For applications with imperfect information such as Mahjong, MDP is
generalized to Partially Observable MDP (POMDP), defined by the tuple < S,A,O,Ω, T,R, γ >,
where O is the observation space, and Ω gives the function mapping from underlying S to O.

During the training stage, RL agent interacts with the environment by repeatedly taking sensory
input of the environment state, executing an action following a policy, and receiving a reward from
the environment. In this process, the agent adjusts its policy to maximize the expected cumulative
reward Qπ(s, a) = Eπ[

∑∞
n=0 γ

nrt+n|st = s, at = a], or equivalently expressed as the state value
function vπ(s) = Eπ(a|s)[q

π(s, a)]. A policy can be expressed either as a straightforward probability
distribution of actions, which is the foundation of policy-based RL algorithms, or as a model of state
values or Q-values, from which the actions are chosen greedily or ϵ-greedily. The later approach,
referred to as value-based RL, is inherently suited to applications with discrete action space and
widely adopted in AI game agents.

In value-based RL, the basic idea is to maintain a table or an approximation function of state values
or Q-values, and update it as the agent interacts with the environment and gains experience. A naive
method is Monte Carlo sampling, which samples an entire trajectory until a terminal state is reached
and computes the actual cumulative rewards before updating a state’s value. Temporal difference (TD)
update improves sample efficiency by estimating the Q-value of an action with only the immediate
reward and the current estimation of the next state:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (1)

This algorithm is known as Sarsa. It is on policy, in that it chooses the next action and estimates its
value using the same policy. A further improvement on Sarsa is off-policy Q-learning, which chooses
actions following a behavior policy and evaluates it using a target policy, and by decoupling the two
policies allows for utilization of expert data. For example, if target policy is greedy and behavior
policy remains ϵ-greedy, the Q values are than updated by

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)]. (2)

And in the last decade, as deep learning rose to its heyday with the advancement in computation
devices, reinforcement learning also started going deep. The seminal work of Deep Q-Network
(DQN) [15] first combined Q-learning algorithm with deep neural networks, achieving human-
level performance in Atari 2600 games and marking the beginning of end-to-end reinforcement
learning. Since then, many improvements have been proposed over DQN. Double DQN (DDQN)
[20] decouples the selection and evaluation of actions to avoid the over-estimation prevalent in DQN.
Dueling DQN [22] factors the network into two branches, one for estimating state values and one
for state-dependent action advantage function, so as to generalize learning across actions. NoisyNet
[7] replaces the classical ϵ-greedy exploration with parametric noise that is added directly to the
network’s weights, producing deterministic results within an episode between weight update and
enabling consistent exploration. Prioritized Experience Replay [16] gives data with larger TD errors
higher probabilities to be sampled, and Distributional DQN [12] express Q-functions in a more
granular level to differentiate state-action pairs with the same expected return. And later studies have
shown that all these improvements can be complementarily combined to achieve higher performance
and data efficiency [10].

Combined with deep neural networks, RL has achieved remarkable feats in playing games. AlphaGo
[17] was trained by both supervised learning and a combination of reinforcement learning with Monte
Carto tree search (MCTS), and became the first AI agent to beat a human professional player in Go.
AlphaGo Zero [19] was trained solely through RL without any domain knowledge, and defeated
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Figure 1: Tiles of Japanese Mahjong (Riichi Mahjong).

AlphaGo 100-0. Alpha Zero [18] stepped further toward a general game-playing system by dropping
alpha-beta pruning and resorting back to Monte Carlo tree search, and applied the same general-
purpose RL algorithm and network structure to Go, chess, and shogi without any domain-specific
knowledge, defeating world champions in all three fields. Since then, the research community has
started to pay more attention to the application of RL in more complex games, especially those with
multiple players or imperfect information, including poker [4, 5], Minecraft [8], Dota [2], StarCraft
II [21], and Mahjong [14].

2.2 Japanese Mahjong

Japanese Mahjong, also known as Riichi Mahjong, is one of the most popular Mahjong subvariants
around the world. Like other Mahjong games, Japanese Mahjong is played by the participants
alternatingly drawing and discarding tiles in an attempt to form a winning hand. It is played with 136
tiles (Figure 1), and starts with 13 private tiles in each player’s hand, 70 in the live wall and 14 in the
dead wall. The tiles consist of three suits (Dots, Bamboo, and Characters) numbered respectively
from one to nine, and unranked honor tiles including four wind tiles (East, South, West, North) and
three dragon tiles (White, Green, Red). Each type of tile has four identical copies.

As in most Mahjong games, a winning hand of Japanese Mahjong is formed by groups, or melds, i.e.
valid collections of three or four tiles, further divided into triplets and sequences. A group can be
made by Chii (make an open sequential group using a tile discarded by the previous player), Pon
(make an open identical group using a tile discarded by any other player), or Kan (make a meld from
4 identical tiles in the same suit or 4 identical honor tiles, either by calling on another’s discarded
tile or by having the four tiles in one’s hand). Additionally, Japanese Mahjong features yaku, riichi
and dora. Yaku is a series of tile patterns that a player is required to have at least one in his hand to
win and also the main factor in determining round score. Riichi is a special type of yaku, where a
player declares ready if he has not claimed any other player’s discards and needs only one more tile
to complete a legal hand. And dora are bonus tiles, determined by dora indicators on the dead wall,
that raise extra scores when present in a winning hand.

One major challenge in building a Mahjong AI agent is that when making a meld with Pon or Kan,
the regular playing order can be interrupted. And since the agent does not have information about
other players’ private tiles, these interruptions are hard to predict, rendering it impossible to build
a Monte Carlo search tree as the agents for Go and chess do. Suphx [14] tackles this challenge by
predicting possible winning hands with depth first search (DFS) instead of directly performing MCTS
to estimate state values. During training, these predictions are done ignoring opponents’ behaviors
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and under the guidance of an oracle who has access to information about the opponents’ privates
tiles and tiles in the wall. This oracle guiding only serves as an approach to speed up training, and
is gradually dropped during the training process. VLOG [9] generalizes this idea into a learning
framework under Bayesian inference, which we will elaborate in detail in the following sections.

3 Variational Auto-Encoder

Variational Bayes is a theoretically well-established and practically powerful algorithm for modeling
data distribution with latent factors. Consider a dataset X = {x(i)}Ni=1 where each observed sample
x(i) is generated by some random process following two steps: (1) a corresponding value z(i) for the
latent variable is drawn from some prior distribution p(z); (2) a value for x is generated from the
conditional distribution p(x|z). The meaning of z and x varies across applications, for example a
player’s private tiles and his discarded tile in Mahjong, or an action and its Q value under the general
settings of reinforcement learning.

To model the distribution of x, one approach is expectation-maximization (EM) algorithm, where a
lower bound for the log likelihood of observed data is constructed and maximized in each step:

log p(x; θ) = log

∫
p(x, z; θ)dz

= log

∫
q(z)

p(x, z; θ)

q(z)
dz

≥
∫

q(z) log
p(x, z; θ)

q(z)
dz

=

∫
q(z)

[
log p(x; θ)− log

q(z)

p(z|x; θ)

]
dz

= log p(x; θ)−DKL (q(z)||p(z|x; θ)) , (3)

where q(z) is an arbitrary probability distribution (i.e. a function that is non-negative and integrates
to 1 over the entire domain), and the inequality in the third line of the equation follows from Jensen’s
inequality. As the Kullback-Leibler (KL) divergence is non-negative, Equation (3) provides a lower
bound for the likelihood of observed data, which is referred to as variational lower bound. In E-step,
q(z) is set to the empirical posterior p(z|x; θ), fixing the KL divergence to 0; in M-step a new lower
bound is constructed.

However, when computing the posterior probablity using Bayes’ rule p(z|x; θ) =
p(x|z; θ)p(z; θ)/p(x; θ), the integral of the marginal likelihood p(x; θ) =

∫
p(z; θ)p(x|z; θ)dz

is often intractable in many applications, especially in Mahjong where the state complexity could
be as high as 10145, rendering EM algorithm impractical. To accommodate such high complexity,
variational auto-encoder (VAE) approximates the posterior with a distribution q(z;ϕ) parameterized
by ϕ (the variational parameters) instead of solving for it analytically. Moreover, to better infer p(x),
the distribution is usually dependent on x, i.e. q(z|x;ϕ).
Also, by expanding the KL divergence DKL (q(z|x;ϕ)||p(z|x; θ)) it can be proven that Equation (3)
is equivalent to

Ez∼qϕ [log p(x|z; θ)]−DKL(q(z|x;ϕ)||p(z; θ)), (4)

which is denoted as the negative loss function −L(θ, ϕ;x).
For simplicity, we assume that both the encoder and the latent prior are Gaussian

q(z|x;ϕ) = N (z|µ(x;ϕ),Σ(x;ϕ)), (5)

p(z; θ) = N (z|µz,Σz), (6)
which makes the second term in Equation (4) analytically tractable. As for the first term, p(x|z; θ) is
also a Gaussian, whose mean and variance are produced by the decoder. It than simplifies to l2 loss
||x− f(z)||2, i.e. the reconstruction error of the observed data. Correspondingly, the second term
can be viewed as a regularization which pulls q(z|x;ϕ) to p(z; θ).

However, theoretically VAE also faces the problem of intractability, as the expectation operation
in Equation (4) is virtually impossible to perform when the decoder is a deep neural network. One
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Figure 2: The architecture of variational oracle guiding framework.

naive idea to tackle this issue is to sample a z from qϕ to substitute the expectation, but that would
cut off the gradient information related to the reconstruction loss from passing back to the encoder.
For this, [13] proposed a reparameterization trick, where z ∼ N (z|µ(x;ϕ),Σ(x;ϕ)) is expressed as
z = µ(x;ϕ) +

√
Σ(x;ϕ) · ϵ, ϵ ∼ N (ϵ|0, 1), and only the random noise ϵ is actually sampled in each

training step, allowing the gradients to propagate back through µ(x;ϕ) and Σ(x;ϕ).

Since VAE proved to be a powerful tool for probability inference, improvements have been proposed
for it. β-VAE [11] is one of the most prominent, which multiplies the second term in (4) by a
hyperparameter β to control the latent information capacity. [9] further rids the model of this extra
hyperparameter by introducing an auxiliary loss term

Lβ = (Dtar
KL −DKL(q(z|x;ϕ)||p(z; θ))) log β, (7)

where Dtar
KL is a task-agnostic target KL divergence.

4 Variational Oracle Guiding

As Mahjong is a game with imperfect information, it is much harder to train a strong agent for
Mahjong than chess or Go. Hence we borrow the idea of oracle guiding from [14, 9], and give the
agent access to privileged information, namely other players’ hand tiles, during training to learn a
better model for predicting Q-values when being tested, i.e. using only the agent’s private tiles and
public information such as discarded tiles.

We encode the game state in the same way as [9], where the executor observation x has the shape of
93× 34, and the oracle observation x̂ ∈ R111×34. The first dimension contains binary information
about a given type of tile, including the number of the tile the agent has in hand, whether it has been
called or discarded by any player, whether it is dora or dora indicator, and whether it can be used
for Chii, Pon or Kan. The 18 extra channels in oracle observation corresponds to information on the
current tile with respect to other players’ private tiles. And the second dimension corresponds to the
34 different types of tiles.

During training, the oracle observation is leveraged by the VAE framework as specified in Section 3,
where the prior distribution of latent variable z is given by another encoder (“prior" encoder) taking
the oracle observation as input:

p(z; θ) = N (z|µ(x̂; θ′),Σ(x̂; θ′)), (8)

where θ′ is the parameters of the posterior encoder (Figure 2). The encoders are one-dimensional
convolution layers, as is common practice in Mahjong AI [14], and both the executor observation and
oracle observation are encoded into 1088-dimension latent features.

We then apply a general-purpose DDQN algorithm with dueling architecture and parametric noise
on the latent features to train an RL agent. As we mentioned in Section 2.1, DDQN decouples the
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selection and evaluation of actions by maintaining two copies of network parameters. To illustrate
how this works, first consider the TD target in DQN (Equation (2)), and represent it explicitly as a
function of the target network parameters θ′:

y = r + γmax
a′

Q(s′, a′; θ′), (9)

which is equivalent to
y = r + γQ(s′, argmax

a′
Q(s′, a′; θ′); θ′). (10)

In DDQN, however, the next action to be evaluated is chosen by the other (online) network:

y = r + γQ(s′, argmax
a′

Q(s′, a′; θ); θ′). (11)

In this way, we can prevent the model from overestimating the value of an action in a given state and
falling into a vicious cycle.

And to better generalize the model across actions, we factor the last layer of our network into two
branches to compute Q value:

Q(s, a;α, β) = V (s;β) +

(
A(s, a;α)− 1

|A|
∑
a′∈A

A(s, a′;α)

)
, (12)

where V,A stand for value branch, action advantage branch and β, α are their respective parameters.
The advantage function is decentralized over the action space A to make sure that V and A can be
identified uniquely.

On top of double Q-learning and dueling architecture, we also discard the exploration mode used
by DQN, and replace it with parametric noise. Specifically, instead of drawing a random number
beforehand to decide whether to generate a random action during training, we add noise to the
parameters of the last layers, execute the forward pass through network to obtain the Q-values as
usual, and choose an action greedily based on these (noisy) Q-values.

Consider either branch in (12). Before injecting parametric noise, the last linear layer is

q = wz+ b, (13)

where z is the output of the previous network layer. After injecting Gaussian noise, it is expressed as

q = (µw + σw ◦ ϵw)z+ µb + σb ◦ ϵb, (14)

where ϵ are random noise. A major advantage of parametric noise is that the parameters µ and σ are
learnable, allowing the model to automatically adjust exploration rate.

A visualization of dueling network architecture and parametric noise is shown in Figure 3, and the
complete details of our network structure are presented in Appendix 7.1.

5 Experiments

We train our Mahjong agent with learning rate lr = 1× 10−4, batch size bs = 1024, discount factor
γ = 1, update interval τ = 1000, and target KL divergence Dtar

KL = 50 for two million steps on
human experts’ playing data provided by [9]. The training was executed on an RTX 3090 and took
about ten hours. The VLOG KL divergence and best action prediction accuracy during training are
plotted in Figure 4. Note that these “best" actions refer to the actions chosen by professional human
players. And as different players may have quite different playing styles, we do not aim to maximize
the prediction accuracy here, but rather strive to learn a better estimation of Q-values across all the
players.

For comparison, we also train three other agents. One is baseline, which is a general-purpose,
task-agnostic RL agent. One is also trained with oracle guiding, but in the style of Suphx [14], where
the oracle guiding is manually dropped from full to none over the training process. The other is
trained by oracle policy distillation (OPD) [6], where a teacher is first trained using only oracle
observation, and than the executor is trained to imitate the teacher’s behaviours. All four models are
trained with the same network architecture and RL hyperparameters.
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Figure 3: Comparison of (left) non-dueling and dueling network architecture, (right) non-parametric
and parametric exploration noise.
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Figure 4: Training curves: (left) KL divergence between the oracle latent feature and executor latent
feature; (right) prediction accuracy of the best action.

We test the four agents in 1000 matches, and the results are recorded in Table 1 and plotted in Figure
5. While baseline bests the other models in average payoff, VLOG agent has the highest top rate
(ending a game with the highest score) and win rate (ending a game with a positive score), both by a
considerable margin. As Mahjong is a highly stochastic game, the 4.1% top rate gap and 4.4% win
rate gap between VLOG and Suphx, the former state-of-the-art Mahjong agent, indicate a significant
leap in game skills. The payoff, on the other hand, is largely determined by luck, especially game
opening, as the scoring system of Japanese Mahjong is quite complex with the different values of
yaku and additional points of dora, explaining the near-zero average payoffs of all agents and their
large standard deviations. Hence, we only consider the winning rates as metrics for evaluating the
agents’ Mahjong skills.

Table 1: Performance of VLOG, Suphx, OPD and baseline agents in 1000 matches.
average payoff top rate (%) win rate (%)

VLOG 1.48±38.3 37.1± 48 35.3± 48
Suphx -1.11±36.7 33.0±47 30.9±46
OPD -2.72±36.6 29.0±45 27.1±44

baseline 2.23± 39.9 32.8±47 31.0±46
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Figure 5: Performance of VLOG, Suphx, OPD and baseline agents in 1000 matches.

Figure 6: Control flow of our Mahjong game frontend.

We also note that the Suphx-styled model we use here is not a fully functional reproduction of the
Suphx Mahjong AI proposed by [14], as the later use Mahjong-specific heuristic techniques other
than oracle guiding, including global reward prediction and run-time policy adaptation. Rather, we
only apply oracle guiding to the baseline in pursuit of a general-purpose game agent, explaining
the fact that our Suphx model only performs a little better than baseline, which also suggests the
significance of our variational learning framework.

Furthermore, we implement a Mahjong frontend for human tests (Figure 6), and integrate our
Mahjong agent into Mahjong Soul 1, one of the most popular online Mahjong platform (Figure 7).
Experiments show that our agent achieves an average human-level performance, and ranks around
Adept level one on Mahjong Soul.2 Figure 8 is a screenshot of our agent’s earlier game records when
still at Novice level, and video clips of our agent playing games both locally and on Mahjong Soul
are presented in the supplemental material and at https://jbox.sjtu.edu.cn/l/e1XQ7P.

Although our VLOG agent bests Suphx agent trained with the same network architecture and RL
algorithm, it does not perform that well in the real games. We believe that is a result of the high
complexity of Mahjong games and the concomitant low training speed, which limited our network
size and total number of training steps. Also, with limited time we only trained our agents with
human expert data, and did not execute online self-play. We leave it to future works to explore these
possibilities.

1https://www.maj-soul.com/
2The ranking system of Mahjong Soul is (from low to high) Novice-Adept-Expert-Master-Saint-Celestial.

Each rank except Celestial has three levels.
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Figure 7: (left) Our Mahjong game in action. (right) Our Mahjong agent playing on Mahjong Soul.

Figure 8: A screenshot of several games by our agent on Mahjong Soul at Novice level.

6 Conclusion

In this work, we implement a DQN-based RL agent for the game Japanese Mahjong along with
a frontend for playing with the agent either locally or online. The agent is trained with oracle
guiding under variational Bayesian learning framework, and with improvements in RL algorithms
including double Q-learning, dueling architecture, and parametric noise. Tests show that, when
trained with the same number of steps, our agent performs better than both Suphx and OPD, the
previous state-of-the-art Mahjong agents, and achieves a modest human-level performance.
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7 Appendix

7.1 Network Structure

Executor encoder:

S e q u e n t i a l (
( 0 ) : Conv1d ( 9 3 , 64 , k e r n e l _ s i z e = ( 3 , ) , s t r i d e = ( 1 , ) , padd ing = ( 1 , ) )
( 1 ) : Conv1d ( 6 4 , 64 , k e r n e l _ s i z e = ( 3 , ) , s t r i d e = ( 1 , ) , padd ing = ( 1 , ) )
( 2 ) : ReLU ( )
( 3 ) : Conv1d ( 6 4 , 64 , k e r n e l _ s i z e = ( 3 , ) , s t r i d e = ( 1 , ) , padd ing = ( 1 , ) )
( 4 ) : ReLU ( )
( 5 ) : Conv1d ( 6 4 , 32 , k e r n e l _ s i z e = ( 3 , ) , s t r i d e = ( 1 , ) , padd ing = ( 1 , ) )
( 6 ) : ReLU ( )
( 7 ) : F l a t t e n ( s t a r t _ d i m =1 , end_dim = −1)
( 8 ) : L i n e a r ( i n _ f e a t u r e s =1088 , o u t _ f e a t u r e s =1024 , b i a s =True )
( 9 ) : ReLU ( )

)

Oracle encoder:

S e q u e n t i a l (
( 0 ) : Conv1d ( 1 1 1 , 64 , k e r n e l _ s i z e = ( 3 , ) , s t r i d e = ( 1 , ) , padd ing = ( 1 , ) )
( 1 ) : Conv1d ( 6 4 , 64 , k e r n e l _ s i z e = ( 3 , ) , s t r i d e = ( 1 , ) , padd ing = ( 1 , ) )
( 2 ) : ReLU ( )
( 3 ) : Conv1d ( 6 4 , 64 , k e r n e l _ s i z e = ( 3 , ) , s t r i d e = ( 1 , ) , padd ing = ( 1 , ) )
( 4 ) : ReLU ( )
( 5 ) : Conv1d ( 6 4 , 32 , k e r n e l _ s i z e = ( 3 , ) , s t r i d e = ( 1 , ) , padd ing = ( 1 , ) )
( 6 ) : ReLU ( )
( 7 ) : F l a t t e n ( s t a r t _ d i m =1 , end_dim = −1)
( 8 ) : L i n e a r ( i n _ f e a t u r e s =1088 , o u t _ f e a t u r e s =1024 , b i a s =True )
( 9 ) : ReLU ( )

)

h2logsig:

S e q u e n t i a l (
( 0 ) : L i n e a r ( i n _ f e a t u r e s =1024 , o u t _ f e a t u r e s =512 , b i a s =True )
( 1 ) : MinusOneModule ( )

)

h2mu:

L i n e a r ( i n _ f e a t u r e s =1024 , o u t _ f e a t u r e s =512 , b i a s =True )

s2q:

D i s c r e t e A c t i o n Q N e t w o r k (
( main_network ) : S e q u e n t i a l (

( 0 ) : L i n e a r ( i n _ f e a t u r e s =512 , o u t _ f e a t u r e s =1024 , b i a s =True )
( 1 ) : ReLU ( )
( 2 ) : L i n e a r ( i n _ f e a t u r e s =1024 , o u t _ f e a t u r e s =1024 , b i a s =True )
( 3 ) : ReLU ( )

)
( v a l u e _ l a y e r ) : L i n e a r ( i n _ f e a t u r e s =1024 , o u t _ f e a t u r e s =1 , b i a s =True )
( a d v a n t a g e _ l a y e r ) : L i n e a r ( i n _ f e a t u r e s =1024 , o u t _ f e a t u r e s =47 , b i a s =True )

)
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