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Abstract

Sketches with sparse strokes rather than dense piz-
els are highly abstract and practically convenient for
humans, yet they pose many challenges to image recog-
nition tasks. In this project, we conduct experiments
on QuickDraw sketch dataset using both convolutional
neural networks and recursive neural networks, com-
pare the performance of several well-performing net-
work architectures, analyze their strengths and weak-
nesses, and make our own improvements. Among the
convolutional networks, EfficientNet achieved a high-
est test score of 83.93%, and with the help of Long
Short-Term Memory it pushed the score even higher,
to 84.97% with CNN and RNN in dual branch and a
branch attention for fusion.

1. Introduction

Free-hand sketch drawing is a common way of con-
veying messages and expressing emotions among hu-
mans and other primate animals. As sketches em-
bed vivid categorical features of the target objects and
distinct visual appearances in simple manipulation of
strokes, they are extremely valuable to understanding
the process of human cognition. The recent develop-
ment of hand-held devices and multi-modal searching
techniques also gave rise to the demand for various
sketch tasks including sketch recognition, sketch re-
trieval and hashing, sketch-photo retrieval and gener-
ation, sketch generation, sketch grouping, sketch pars-
ing, sketch segmentation, sketch simplification and ab-
straction and so on.

As sketches are expressed by stokes, leaving most
space of the canvas blank and the generated image
with sparse signals, they pose extra challenges over

*Our project source code is available at https://github.com
/Vladimirovich2019/CS420-Project.

the classical image classification problem. In general,
there are three families of methods to process sketches,
namely Convolutional Neural Networks(CNNs), Re-
current Neural Networks(RNNs) and Graph Neural
Networks(GNNs). In this project, we explore the appli-
cation of commonly known image classification meth-
ods, majorly CNN, on QuickDraw [3] sketch dataset,
as well as some variants leveraging the unique proper-
ties of sketches with RNN and other techniques, such
as pretraining.

In our experiments, among the purely CNN-based
models EfficientNet [19] outperformed the others and
achieved a test accuracy of 83.93% initialized with
pretrained weights, while purely RNN-based models
barely reached an accuracy of 57% due to the high-level
abstraction of strokes. However, the hybrid CNN-RNN
dual-branch model’s performance surpassed CNN mod-
els, and reached 84.49% with simple fusion of the two
branches’ decision values, and 84.97% using a multi-
layer perceptron (MLP) to learn a branch-level atten-
tion.

The rest of this work is organized as follows. In
Section 2, we briefly review the related works in the
research community concerning sketch recognition and
its two foundations - image classification and sequence
classification. Then, in Section 3 and Section 4 re-
spectively we discuss our work in using CNN-based
approaches and RNN-assisted approaches to tackle the
task of sketch recognition. In each section, we first
give the experimental setting, then discuss our meth-
ods and analyze the empirical results. Lastly, we dis-
cuss the limitations of our work in Section 5 and draw
our conclusions in Section 6.

2. Related Work
2.1. Image Classification

Image classification has long been a popular research
topic in machine learning. In the past few decades, con-
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volutional neural networks have been the most widely
adopted approach for image classification, as the con-
volution operation can detect local spatial structures
with a very small amount of parameters compared with
fully connected layers.

In 1998, LeNet et al. [9] applied a 7-layer CNN to
recognize hand-written digits, pioneering the era of
convolution in machine learning. Benefited from the
development in computation devices, AlexNet [8], an
eight-layer convolutional neural network with 60 mil-
lion parameters and trained on multiple Graphics Pro-
cessing Units (GPUs) was proposed in 2012, winning
the ImageNet Large Scale Visual Recognition Compe-
tition (ILSVRC) of that year and setting off the fetish
for deep learning. Since then, countless models and
variants have been proposed, some of the most notable
ones being Inception [18] which concatenates the fea-
tures maps of different-sized convolutional kernels (in-
cluding 1 x 1 kernel) to achieve a deeper network ar-
chitecture, VGG which uses 3 x 3 small kernels, and
ResNet [1] which introduces skip connections into the
network to tackle the difficulty of back propagation in
deep models, extending the network architecture to a
staggering number of 152 hidden layers and becoming
the de facto default model for image classification since.

Since the proposal of ResNet, convolutional net-
works have been continuingly scaling up free from the
concern of vanishing gradient, and there has been a
trend toward larger and deeper networks using ResNet-
styled skip connections, which often yield better per-
formance. Tan et al. [19] reflected on model scal-
ing for convolutional networks and presented Efficient-
Nets, which utilized the technique of neural architec-
ture search and significantly improved model perfor-
mance by carefully balancing network depth, width,
and resolution.

Recently attention mechanisms [6, 10, 11] with
dynamic selection to disregard irrelevant parts have
drawn great attention. Transformer [20], an attention-
based neural network architecture that is distinctly
different from the typical CNN or RNN architecture
and originally proposed for natural language process-
ing (NLP) tasks, has also been introduced into com-
puter vision [1] and outperformed various CNN-based
methods on most common benchmarks [2].

2.2. Sequence Classification

Unlike images, sequential data - such as text or the
stroke representation of sketches - cannot be processed
directly by fully connected or convolutional networks,
as the length of sequence usually varies between train-
ing instances. Instead, they are typically processed
by recursive neural networks, which take the hidden

states of last time step as input along with the data at
next step. One of the most popular RNN architectures
is Long Short-Term Memory (LSTM) [5], which deals
with the vanishing gradient that RNN usually suffers
by introducing several gates to the network to allow for
long-range information dependency, as demonstrated
in Figure 1!, where

fi =Wy - [he_1, 2] + by), (1)
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However, the limited temporal extent of LSTM re-
stricts the learning of structural complexity of sketches
that may be accommodated in sequence embeddings.
This shortcoming has been addressed through the
emergence of Transformer[20] networks in which slot
masking enhances the ability to learn longer term tem-
poral structure in the stroke sequence.

In the past decade, the advent of word embeddings
[13, 14, 15] have introduced novel encoding methods
into sequence-based tasks. Recently, various methods
of attention including spatial attention, channel atten-
tion, branch attention and temporal attention have
been proposed. Among them the spatial attention-
based Transformer [20] is one of the most ground-
breaking works.

2.3. Sketch Recognition

For the task of sketch recognition, typical methods
view sketch information as either 2D images or 1D se-
quences. Yu et al. [25] proposed Sketch-a-Net with
AlexNet [8] as backbone learning from the sketch im-
age and for the first time beat human performance.
It was also the first deep CNN designed for free-hand
sketch tasks. Ha et al. [3] presented an RNN-based
network for stroke sequence encoding and decoding, to-
gether with a Variational Bayesian Autoencoder (VAE)
framework learning a generative model for free-hand
sketches.

Sketches can also be recognized with the hybrid of
image-based methods and sequential methods. The
combining of the two methods can either be dual
branches [7, 24, 21] in parallel or a cascaded architec-
ture [12, 17]. The two ideas differ in the fusion step:
dual-branch methods conduct late fusion on features

I Figure from https://colah.github.io/posts/2015-08-Und
erstanding-LSTMs/
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Figure 1: The architecture of AlexNet (top left), and the network blocks of Inception (top right), ResNet (bottom

left), and LSTM (bottom right)

extracted by CNN and RNN, while cascaded methods
use early fusion.

More specifically, the paper SketchMate [24] in-
troduces a novel problem of sketch hashing retrieval
(SHR) and a multi-branch CNN-RNN architecture that
specifically encodes the temporal ordering information
of sketches to learn a more fine-grained feature repre-
sentation. The authors combine RNN stroke modeling
with conventional CNN under a dual-branch setting to
learn better sketch feature representations. However,
the problem of visual abstraction, especially how it can
be accommodated under a large-scale retrieval setting
remains unsolved.

Inheriting the spirit of SketchMate, the paper of
sketch-R2CNN [12] proposes a novel end-to-end single-
branch network architecture RNN-Rasterization-CNN
(Sketch-R2CNN for short) to fully leverage the vec-
tor format of sketches for recognition. Sketch-R2CNN
takes a vector sketch as input and uses an RNN for
extracting per-point features in the vector space. The
authors then develop a neural line rasterization module
to convert the vector sketch and the per-point features
to multi-channel point feature maps, which are sub-
sequently fed to a CNN for extracting convolutional
features in the pixel space. The neural line rasteri-
zation module is designed in a differentiable way for
end-to-end learning.

However, CNNs and RNNs focus on local fea-
tures, while human beings recognize sketches by global
shapes. To utilize the global shape information, Zhang
et al. [26] proposed a dual-branch hybrid CNN and

used a shape net for extracting global shape descrip-
tors. More recently, GNN-based methods are also pro-
posed for sketch recognition. Xu et al. [23] proposed
Multi-graph Transformer to preserve geometric infor-
mation of strokes and resolve the drawbacks of sketch
modeling in Euclidean space in models that are based
solely on either images or sequences, yet the perfor-
mance was not as good as CNNs.

3. Classification with CNN
3.1. Experimental Settings

As a baseline, we first treat the sketch classifica-
tion problem as a general image classification task, and
apply several convolutional neural network to it, like
ResNet, MobileNet, EfficientNet along with their dif-
ferent versions.

The dataset we use is a subset of QuickDraw, which
includes 25 categories of animal sketches, each with
75 thousand training samples, 2500 validation samples,
and 2500 test samples. This amounts to a training set
of 1.9 million samples, and a validation and test set
both of 62.5 thousand samples.

As the raw sketch data of QuickDraw are stored
as stroke sequences rather than RGB images, we first
transform the data to make them fit for convolutional
operations. The sequences have three channels with
various lengths, where the first two channels are the
strokes’ relative offsets at each step with respect to the
previous step on axes x and ¥, and the third channel is
binary bits indicating the state of the pen, i.e. whether
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Figure 2: The structure of ResNet-50

it is touching the paper of lifted at this step. Using this
information, we translate the strokes of the sketches
and store them as 28 x 28 standard RGB images.

To measure the performance of the sketch recogni-
tion models, the research community typically use top-
k accuracy [22]. Top-k accuracy is computed as the
number of labels in the top k predictions for each in-
stance of the model divided by total number of samples.
Researchers often use 1, 3, 5, 10 etc for k, while in our
experiment we use top-1 accuracy since the number of
classes is relatively small (being 25).

3.2. Methods

In this task, we make use of several effec-
tive network structures in our training, including
ResNet50, ResNet101, MobileNet-v2 [16], EfficientNet-
b0, EfficientNet-b7 [19]. As we mentioned in Section
2.1, ResNet has almost become the default model for
image classification since its advent. In this project, we
first compare the performance of several ResNet-based
models, and make some improvements on them.

The key idea of ResNet is the application of skip
connections (figure 1), where in each network block the
input undergoes an identity map (skip connection) and
is added to the normal output of linear transformation
and Rectified Linear Unit (ReLU) nonlinear activation.
In this way, in the backward pass of training the gradi-
ent is back propagated through both the ReLLU connec-
tion and the identity connection and prevented from
vanishing, solving the problem that almost all deep
neural networks had suffered before ResNet. In this

work, we use two different configurations of ResNet:
ResNet-50 (about 25 million parameters) and ResNet-
101 (about 45 million parameters). The network struc-
ture for ResNet-50 can be referred to Figure 22
We also compare the performance with several other
convolutional networks, including MobileNet [16],
which is based on inverted residual structures and has
about 3.4 million parameters, being especially designed
for lightweight tasks and fast inferences. The model
structures can be referred to Figure 43. We also make
use of EfficientNet [19], the currently state-of-the-art
convolutional network with a very efficient network ar-
chitecture. Its components and the best performing
type Efficient-b7’s structure can be referred to Fig-
ure 5 and Figure 6*. EfficientNet proposes compound
model scaling, which combines three types of network
scaling: depth, width and resolution, and scales them
in accordance. The base structure of EfficientNet is
found using structural search and then scaled using
the rules of compound scaling to obtain a series of net-
works with excellent performance. By using MBCConv
from MobileNet V2 [16] as the backbone of the model,
and squeeze excitation method from SENet to optimize
the network structure, the performance of the model
is further boosted. By scaling up baseline networks,
the structure contains more parameters from the B0

2Figure from https://zhuanlan.zhihu.com/p/353235794

3Figure from https://arxiv.org/abs/1801.04381

4Figure from https://towardsdatascience.com/complete-a
rchitectural-details-of-all-efficientnet-models-5£d5b73
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Figure 3: The training curves of ResNet-50 (top left), ResNet-101 (top right), pretrained ResNet-50 (bottom left),

and pretrained ResNet-101 (bottom right)
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version with about 11 million parameters, to the B7
version with about 65 million. We can refer to these
results in Figure 7.

As our training samples are relatively scarce when
compared with the parameters of ResNet, we also im-
prove the models’ performance by taking advantage of

pretrained models. Pretraining has been a core idea in
the recent development of transfer learning. It aims to
leverage the huge amount of freely available datasets
(such as ImageNet, a large-scale visual dataset with
more than 14 million hand-annotated images) to ac-
quire knowledge that is shared between similar tasks,
and then utilize this knowledge to fine-tune on a small
amount of training samples. In computer vision, this
knowledge can be the feature representation of images.
The models we use, provided by PyTorch, are pre-
trained on a 1000-category subset of ImageNet. To
accommodate our 25-category training set, we substi-
tute the last fully connected layer of ResNet (originally
a mapping from R2%4® to R1909) with a randomly ini-
tialized layer mapping from R2048 to R25.

For the purpose of comparison, all the networks
are trained with the same hyperparameters: a learn-
ing rate of 3 x 1074, a batch size of 32, and a weight
decay factor of 1 x 107°. The models are trained for
10 epochs on an RTX 3090, which took about three
hours for MobileNet-V2, four hours for ResNet-50 and
EfficientNet-BO0, five and a half hours for ResNet-101,
and fourteen hours for EfficientNet-B7.

3.3. Experimental Results

The training curves of ResNet-50, ResNet-101 and
their respective pretrained versions are shown in figure
3, and their results are recorded in Table 1°. Among
the models that are trained from scratch by us, ResNet-
50 achieved a best performance of 50.43%. ResNet-
101, on the other hand, have too many parameters and
overfitted on the training set, as can be seen in Figure

5Due to limited time and computation resources, we did not
conduct experiments with the non-pretrained versions of Effi-
cientNet.
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3 where the validation loss starts to soar after several
epoch of training while the training loss continues to
drop steadily.

However, as mentioned above, the lack of training
data can be mitigated by pretraning. As shown in Ta-
ble 1, all models gained boost in performance when
initialized with the pretrained weights, but ResNet-101
is the most prominent, whose test accuracy increased
more than three percent, surpassing MobileNet and
closing in on ResNet-50. And EfficientNet-B7, bene-
fited by its shear network size, achieved the highest
test score of 83.93%.

3.4. Image Channel Redundancy

Sketch images generated from strokes are colorless,
i.e. the images are black-and-white. Typical CNNs
for image classification take RGB three-channel inputs,
and in sketch classification task these three channels

Table 1: The test accuracies of CNN models

Model Acc Acc (pretrained)
MobileNet-V2 80.36% 81.00%
ResNet-50 81.43% 82.13%
ResNet-101 78.86% 81.92%
EfficientNet-B0 79.42%
EfficientNet-B7 83.93%

may be redundant. We investigate the redundancy by
training and evaluating the models on the same set re-
placing the convolution kernel of the first layer with 1-
channel-input kernel, and leaving other configurations
unchanged. However, the results are practically the
same as those in Table 1. This observation can be jus-
tified by the fact that the two redundant input channels
only introduces several thousand extra parameters in



the first convolution layer, having almost no influence
in face of the huge network architectures. Thus, we
keep the three-channel input to follow the convention
in image-related tasks.

Moreover, to further justify our conclusion, we vi-
sualize the first convolutional layer of ResNet-50 as
in Figure 8. As can be seen from the figure where
white pixels indicate the focus of the model, the weights
barely differ across different channels. We also observe
a redundant output channel in row 4, column 2 where
all the pixels of the convolutional layer are black.
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Figure 8: Weights of the 3-channel input first convolu-
tional layer of ResNet-50

3.5. Robustness Analysis

To test the robustness of convolutional models, we
flipped the test data, both horizontally and vertically,
and ran inference again on them. The resulting test
accuracy is recorded in Table 2

Table 2: Robustness analysis of CNN models by flip-
ping the test data. All models are pretrained.

Flip Direction
Model horizontal vertical both
Resnet-50 81.16 26.46 26.49
MobileNet-V2 80.28 27.67  27.67
EfficientNet-B7 83.11 30.35  30.32

It can be observed that all the CNN models’s test ac-
curacy dropped dramatically when the input is flipped
vertically, yet they are quite robust to horizontal flip-
ping. The reason for such phenomena is two-fold. One
is the inconsistency of drawers’ focuses, for example fo-
cusing on the whole body or focusing on certain parts
like head instead. This can be corroborated by roughly
browsing the dataset. For instance, Figure 9 shows sev-
eral possible patterns occurring in the cow sketches.
The users of Quick, Draw! may focus on the head (col-
umn 1), the head and neck (column 2), whole body
(column 3), or the texture (column 4) of the given
animal. Therefore, without external information, the
model has to try to guess what the focus is, and the
prediction is based on all kinds of possible focuses.

Figure 9: Sample cow sketches with different focuses

And the other reason is the high abstraction of
sketches, which makes them not vertically rotation-
invariant even to human inspection. For example, Fig-
ure 10 shows a sketch of a dog and its flipped images.
The predictions from trained ResNet-50 are shown in
the right. When flipped horizontally, the model is still
able to recognize the dog. However, when the image
is flipped vertically, the ears of the dog are now recog-
nized as the wings of an owl.
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Figure 10: Effect of flip operation on a sample sketch
(in the right of each column are the top-3 predictions
of trained ResNet-50)

We also investigate the models’ robustness from an-
other perspective, by adding pixel-level Gaussian noise
with 0 mean and 0.4 standard deviation to the test
data as in Figure 11. It can be observed that noise
of such scale does not visibly change the image’s ob-
ject. The testing results are shown in Table 3. While
ResNet proved to be robust to noise, the performance
of both MobileNet and EfficientNet dropped visibly.
This is because the first convolution layer of ResNet
uses 7 X 7 kernels, while the first layers of MobileNet
and EfficientNet use 3 x 3 small kernels.

Filters with larger kernel sizes intuitively will
smooth the features, making the models less sensitive
to pixel-wise noise. Given a k X k convolutional kernel
K, we analyze the resulting feature output y of percep-
tion field x with noise €, where the es are independent
and identically distributed Gaussian noise with mean

0 and variance 0?. When the kernel parameters are

k k
normalized, larger k often implies smaller > > K2

i=1j=1
from Equation 7, and the noise is more likely to be
eliminated.

k
Z Kij(wij + €i)

14=1

k k k k
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More illustrative results can be seen in Figure 15,
where we visualize the outputs of the three models with
the same image input. The input image pair is that in
Figure 11. Focusing on the effect of the noise, especially
the pixels around the center and on the right of the
image, we can see that the noise has little effect on
the extracted features of ResNet in Figures 15(a) and

15(b). ResNet successfully denoises the data in the
first filter layer while MobileNet and EfficientNet fail
to eliminate the noise since Figures 15(d) and 15(f) are
relatively noisy concerning the original outputs.

Table 3: Robustness analysis of CNN models by adding
random noise. All models are pretrained.

MobileNet-V2 ResNet-50 EfficientNet-B7

Acc 73.21 80.37 77.50

(a) Original Image ) Noised Image

Figure 11: Example for adding noise to an image

To summarize, due to the abstraction of sketches,
the models are robust to horizontal flipping and per-
form badly in vertical flipping due to semantic shift.
Moreover, there is a trade-off in convolutional kernel
choice between capturing locality and denoising, and
ResNet is more robust to noise while EfficientNet is
more accurate.

4. Classification with the Hybrid of CNN and RNN
4.1. Experimental Settings

Since sketches have distinct properties compared
with natural images in that they are composed of only
crude lines, in this section we leverage the stroke se-
quence representation of sketches and apply recurrent
network to help with classification. As mentioned in
Section 3.1, the strokes of QuickDraw are three-channel
sequences with the first two ranging from about -30000
to 30000 indicating the pen’s movement at each step,
and the third being binary values indicating the pen’s
status. To prepare the data for RNN models, we simply
perform Z-score normalization on the first two chan-
nels.

4.2. Methods
4.2.1 RNN-only Baseline

As an RNN baseline, we first test the performance of
pure RNN on sketch recognition task. We first apply
one-dimensional convolution on each channel of the in-
put data to smooth the strokes and better capture tem-



poral relations of the points, and then feed the strokes
into a two-layer LSTM with 256 hidden units. The
second LSTM layer’s output at each step is collected
and averaged, the result of which is then used as the
feature for classification task, as shown in Figure 12 ©.
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Figure 12: Network structure of baseline RNN

4.2.2 Integration of RNN into CNN

We then integrate RNN into our CNN models to help
train a better classifier. A naive idea is simply averag-
ing the scores from RNN and CNN outputs, and we did
not expect such idea to work well. Yet the experimen-
tal results are unexpectedly outperforming, reaching
an accuracy of 84.49% on the test set. Our explana-
tion is that when a sketch is too abstract to recognize,
CNN is uncertain and requires extra stroke sequence
information extracted by RNN, though noised, as an
auxiliary to determine the prediction.

However, as our RNN baseline alone only achieved a
test accuracy of 57.25%, suggesting that the temporal
information contained in strokes sequences may not be
that helpful in sketch recognition, we design our net-
work architectures carefully so as to make sure that
RNN serves indeed only as an auxiliary and does not
dominates over CNN. One choice of integrating RNN
with CNN is the cascaded architecture proposed by

6Figure from https://github.com/tensorflow/docs/blob/
master/site/en/r1/tutorials

[12], where a neural network based rasterizer trans-
forms the features extracted by RNN into pixelated
images, which are then sent into a CNN (Figure 13).
However, our experiments show that in this way RNN
brings too much unstability into the produced images,
resulting in poor performance of the downstream CNN
classification.

An alternative is the idea of dual-branched network
architecture proposed in [24] (Figure 13), i.e. train a
CNN model and an RNN model in parallel using the
image input and stroke input respectively, and concate-
nate their extracted feature vector for the final classi-
fication. In this way, the model can utilize both the
spatial structures of the sketch images and the tempo-
ral orders in which the lines are drawn, but also relies
mainly on the CNN branch as the feature vector ex-
tracted by CNN is in a much higher dimension than
that of RNN branch. We follow this framework, and
choose pretrained EfficientNet-B7 for the CNN branch,
with the same hyperparameters as described in Section
3.2. The RNN branch is trained with the same batch
size as that of CNN, but with a learning rate of 3x 1073
and a weight decay factor of 1 x 1074, The features
extracted by the two branches (2560-dimensional for
CNN and 256-dimensional for RNN) are than concate-
nated and undergo a two-layer perceptron classifier.

Moreover, we extend the idea of pretraining by first
training the CNN branch and RNN branch separately,
and then with the two branches fixed learn a branch-
level attention by fine-tuning the classifier. To save
training time, we run the CNN and RNN on the train-
ing set and save the extracted features locally to avoid
redundant forward passing through the two branches
in each training step. Then we directly treat the inter-
mediate features as input and train the classifier.

4.3. Results and Analysis

As mentioned before, our RNN baseline achieved an
accuracy of 57.25% on the test set. This is not even
close to the CNNs’ performance, but still a satisfactory
result considering that the strokes may be very difficult
to recognize without accessing the spatial information,
as the representation of strokes in the Cartesian coordi-
nate of the same category may dramatically vary from
each other even with a slight rotation. The naive fu-
sion of CNN and RNN'’s decision values yields a result
of 84.49%, and when adjusted by our branch-level at-
tention weights that score is pushed further up by half
a percent, to 84.97%. The results are summarized in
Table. 4.
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Figure 13: An illustration of cascaded RNN-CNN architecture (top) and dual-branch CNN-RNN architecture

(bottom) for sketch recognition.

Table 4: Summary on test accuracy

CNN RNN Nalve Fuze Branch Attn

Acc 83.93% 57.25% 84.49% 84.97%

4.4. Ablation Studies

To understand the importance of each part of our
RNN branch, we performed ablation studies on the
LSTM model. As shown in Figure 12, we average
the outputs of all the time steps from the second-layer
LSTM before feeding them to the classifier. This oper-
ation turns out to be vital in training the RNN model.
When feeding only the last-step output to the classifier,
as is the common practice in many sequential tasks, the
model fails to learn anything, as shown in Figure 14.
We also find that first applying one-dimensional con-
volution to the inputs’ channels before feeding them to
LSTM helps increase the model’s generalization ability,
as can be seen in Figure 14, where the validation curve
becomes jaggy after removing the convolution layers.

5. Limitations

Despite the model performance we achieved, there
are two drawbacks of our work that requires further
experiments to perfect if time and resource permit.

One is the average operation on the LSTM outputs.
By this operation we assume that the outputs of all
steps are equally weighted. However, the information
extracted in different steps are not necessary equal in
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status intuitively. Therefore, more promising methods
may be replacing the average operation with a self-
attention layer, which consumes large GPU memory
and computation time for such long sequences as in
QuickDraw.

The other is the failure of training cascaded RNN-
CNN models. We tried to reproduce the experiment
of current SOTA model - Sketch-R2CNN - for sketch
classification on the subset of QuickDraw with the same
training configuration as used in the original paper, yet
in the training process we did not see any trend of loss
decreasing to lower than 3. The loss quickly converged
to around 3.2, i.e. approximately In 25, suggesting that
the model is randomly guessing the output. The un-
derlying reason may be the insufficient amount of data
and the large proportion of noise therein.

6. Conclusion

Sketch itself with high abstraction is not easily rec-
ognized, as can be seen in the game of Draw Some-
thing. The sparsity of sketch images makes sketch
recognition even more challenging. In this project, we
investigate the performance of several well-performing
CNNs including ResNets, MobileNet, and EfficientNets
on sketch recognition. Pretrained weights are used in
initialization to boost the performance. Among them
EfficientNet-B7 outperforms the others, reaching an ac-
curacy of 83.93% on the test set. To achieve better
performance, we introduce an LSTM trained on the
stroke sequences with a relatively low performance of
57%. However, by introducing a 2-layer perceptron as
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Figure 14: Ablation studies on LSTM: the training and validation curves of the RNN model adopted by us (left)
compared with (1) taking last-step output (middle), and (2) without one-dimensional convolution layers (right).

dual-branch attention module, the LSTM helped Effi-
cientNet to push the test accuracy up to 84.97%. We
also conduct robustness analysis on the CNN models
and ablation studies on the RNN model, and analyze
their respective strengths and weaknesses.

References

[

(4]

[5]

(7]

(8]

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image
is worth 16x16 words: Transformers for image recog-
nition at scale. arXiv preprint arXiv:2010.11929, 2020.
A. D. et al
Transformers for image recognition at scale.
abs/2010.11929, 2020.

D. Ha and D. Eck. A neural representation of sketch
drawings. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouwver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770-778, Los Alamitos, CA, USA, jun
2016. IEEE Computer Society.

S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735-1780, nov 1997.
J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7132—
7141, 2018.

Q. Jia, M. Yu, X. Fan, and H. Li. Sequential dual deep
learning with shape and texture features for sketch
recognition. arXiv preprint arXiv:1708.02716, 2017.
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012.

An image is worth 16x16 words:
CoRR,

11

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

J. Li, J. Wang, Q. Tian, W. Gao, and S. Zhang.
Global-local temporal representations for video person
re-identification. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 3958—
3967, 2019.

X. Li, W. Wang, X. Hu, and J. Yang. Selective kernel
networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 510—
519, 2019.

Z. Y. e a. Li Ly Zou C. Sketch-r2cnn:
rasterization-cnn architecture for vector sketch recog-

nition. IEEFE transactions on visualization and com-
puter graphics, 3745-3754., 2020.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Ef-
ficient estimation of word representations in vector
space. In Y. Bengio and Y. LeCun, editors, 1st In-
ternational Conference on Learning Representations,
ICLR 20183, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Proceedings of
the 26th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’13, page
3111-3119, Red Hook, NY, USA, 2013. Curran Asso-
ciates Inc.

An rnn-

J. Pennington, R. Socher, and C. Manning. Glove:
Global vectors for word representation. volume 14,
pages 1532-1543, 01 2014.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. pages 4510-4520, 06 2018.

R. K. Sarvadevabhatla and J. Kundu. Enabling my
robot to play pictionary: Recurrent neural networks
for sketch recognition. In Proceedings of the 24th ACM
international conference on Multimedia, pages 247—
251, 2016.



(a) Original 1st Layer Feature, ResNet

o R R
EEEoESEOE
SEoREEE
EEEEEETS

(c) Original 1st Layer Feature, MobileNet

(e) Original 1st Layer Feature, EfficientNet

12

|
| =

= =
[ 2]

B
=
EERERCE
EECNENEE

=
=
=z
=
&
ok
2

EIH@EH@E

Ef‘é
%
=

(b) Noised 1st Layer Feature, ResNet

EENEEmEC
EeEoEECE
SEC R
EEEEEETs

(d) Noised 1st Layer Feature, MobileNet

SEE

CHAEEEET A

(f) Noised 1st Layer Feature, EfficientNet

Figure 15: Features Extracted by the First Layer Filters of ResNet, MobileNet and EfficientNet
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